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LElTER TO THE EDITOR 

On static, axially symmetric solutions of four-dimensional 
principal U models 

Zalln Horvlth and Tibor Kiss-T6th 
Institute for Theoretical Physics. Roland Eotvos University, H-1088 Budapest, Puskin 
ucta 5-7, Hungary 

Received 10 May 1982 

Abstract. We develop an inverse scattering method for generating static, axially symmetric 
solutions for SU(N) principal U models. 

Recently several papers have appeared discussing different features of the nonlinear 
U models in two dimensions (Ogielski et a1 1978, Tu 1982). However, the higher- 
dimensional versions of these models also have been used in different branches of 
theoretical physics. For example the four-dimensional nonlinear chiral model was 
applied for understanding current algebra results (de Alfaro et a1 1973), and this 
model may also play an important role in describing the pion condensate in nuclear 
physics. On the other hand, the Heisenberg model of the ferromagnet can be con- 
sidered as an O(3) static nonlinear U model (Belavin and Polyakov 1975). As was 
pointed out by Hirayama et a1 (1978) the axially symmetric version of this model is 
in close connection with the Ernst equation of general relativity describing stationary 
and axially symmetric vacua. 

The self-dual classical solutions of gauge theories can also be obtained from a 
four-dimensional U model-like equation (Pohlmeyer 1980, Forglcs et a1 1981a, 
Horvlth and Kiss-Tbth 1981). 

Several methods have been worked out to generate solutions of Ernst equations 
(Harrison 1978, Neugebauer 1979, Belinski and Zakharov 1979) and some of them 
were even generalised for higher groups (Horvlth and Kiss-Tbth 1981). Using these 
techniques one can construct the asymptotically flat, stationary, axially symmetric 
vacua in general relativity and, as a completely different application, the static axially 
symmetric self-dual monopoles for Yang-Mills fields coupled with a Higgs scalar in 
the adjoint representation (Corrigan and Goddard 1981, Forglcs eta1 l980,1981b, c). 

The aim of the present letter is to show that these methods can be applied 
successfully for SU(N) principal U models. We present here how the procedure 
proposed by Belinski and Zakharov (1979) for the Ernst equations can be reformu- 
lated to generate static axially symmetric solutions of SU(N) nonlinear principal U 
models. As an application we generate some solutions for the SU(2) case (chiral 
models). 

The usual form of the action for the nonlinear chiral models is 

s = - a,aiawai d4x i = o , 1 , 2 , 3  (1) 2 ' I  
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with the constraint that the length of the field is constant 

( P i @ ' =  1. 

This action leads to the following field equations 

a , a W  = A @ *  

where A is the Lagrange multiplier field. 
A more convenient form of the action is 

where g = Qo + hjQi E S U ( 2 )  and the q are the Pauli matrices. The model is sometimes 
called principal U model too. One can readily generalise the model by considering 
g E SU(N) which is the principal SU(N) U model. 

The corresponding field equations will have the following form 

a, (a,gg-') = 0. 1-51 

In what follows we want to construct classical static, axially symmetric solutions 

(6)  

where r = ( x :  + x;)'". 
This is a very familiar equation discussed in Belinski and Zakharov's paper (1979) 

with the only difference that the matrix g is unitary in our case while it was Hermitian 
in theirs. Therefore the clue for finding solutions of equation (6) is to write up an LA 

pair defined as 

of this model. Then equation ( 5 )  reduces to 
- 1  adr8,g- l )  + ax3(rax3g 1 = o 

Y r U 2 - A U 1  r U 1  + A  UZ 
A 2 + r 2  A 2 + r 2  D2Y = DIY = 

where we introduced the following notation 

2A 
A 2 + r 2  D~ = ax3-- 2Ar 

A + r  
D2 = a, + a ,  u1 = ra,gg-' 

(7) 

u2 = rax3gg-' 

(8) 

and the complex parameter A is independent of the variables r and x 3 .  From the 
condition of the unitarity of g it follows that the matrices U, are anti-Hermitian. 

The compatibility condition of the system of equations (7) is equation (6). One 
can see that a natural boundary condition for the matrix *(A, r, x 3 )  at A = 0 is 

(9) 

If we want to generate new solutions of equation (6) it is necessary to know a 
particular solution of it. Let us assume that this solution is given by go, UIO and VZO; 
then as a first step we must integrate system (7) to obtain the corresponding solution 
Po (A, r, xj). Then we look for the new solution Y(A, r, x3) in the following form 

g ( r ,  x d  = W O ,  r. xd.  

Y = X Y O .  110) 
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Substituting (10) into (7) we obtain for x(A, r, x3) 

* (11) 
~ U Z - A U I  ~UZO-AUIO rU1+ A U2 rU1o + A U20 

x-x A 2 + r 2  D2x= A 2 + r 2  x-x A 2 + r 2  m x =  * 2 + ? 2  

Taking into account the unitarity of g one can derive that k+(i)]-' fulfils the 
same equation as x. Therefore, the simplest way to guarantee the unitarity of x is to 
impose the condition 

x ( A ) x + ( i ) = I  (12) 

where the bar denotes complex conjugate and + stands for the adjoint. 
Furthermore we demand that the matrix ,y should tend to unity as A + 00 

x(m) = I .  

Once we obtain a solution x of the system (1 1) we can immediately get a new solution 
of (6): 

g = x ( ' 3 g o .  (13) 

The soliton solutions of equation (6) correspond to the simple poles of the matrix 
x in the compiex plane of A. Therefore, the matrix ,y can be written in the following 
way 

where n denotes the number of poles, The residues R k  and the pole positions p k  

depend only on the variables r and x3 .  
x-'(A) is defined in a similar way 

Taking the residues of the poles p k  in the relation x x - l =  I one can easily see that 

R k * X - l ( p k )  = 0 (16) 

which means that the matrices R k  and , y - ' ( k k )  are degenerate having the form 
' k  N-sk  

(17) ( k  i ) (k , ik)  
h - ' b k ) I a b  = q a  ' Ir P b  

(Rk)ab = c n L k * i k l m i k * i k )  

ik E 1 )k=1 

with m ( k i  ) (k.ik) 
b " q b  =Owhere lSsSN-1.  

From constraint (12) we obtain 

k k  = fik and st = R k .  

Substitution of expression (14) into (11) and the supplementary condition (12) 
completely determine the pole trajectories ,ut(); x g )  and the matrices Rk(r, x3) .  The 
requirement that the residues of the second-order poles appearing on the left-hand 
side of the equation (11) should vanish, determines the form of the function p k .  These 
functions must satisfy a pair of differential equations 

a * , p k  +2p&.L;+r2)-1= 0 a&k - 2 ? p k ( / b L + ? 2 ) - 1 =  0 (18) 
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whose solutions are roots of 
2 2 

p & - 2 ( W k - X 3 ) p k - r  = o  
where wk are arbitrary constants (in general complex). 

The vectors mhk.'k) defined in (17) can be obtained from equation (11) by requiring 
that they be satisfied at the poles A = p k .  They can be constructed from the given 
solutions V&, r, x3) as follows 

(19) 

where the mbk*'k) are s complex linearly independent constant vectors. The remaining 
task is to obtain n(k9ik) from condition (12). The final result is that the nbk,'k) are the 
solutions of a system of E:=, s, linear equations 

( & . I k )  = mL;Jk)[V-l m a  0 (A, r, x 3 ) l c a  

where r is a matrix with elements 

The form of the new solution g with the aid of (9), (10) and (14) is 

(22) 
k 

In order to get a new solution of our equation (6) we must have a unitary g with det 
g = 1 .  Therefore, we calculate the determinant of g as given in (22), by noticing that 
the same result can also be obtained iteratively, i.e. applying a similar procedure n 
times but using xl(A) containing a single pole term only in every step (this means that 
for xl(A) in equation (14), n = 1). Therefore, it is enough to calculate the determinant 
of x containing only a single pole. 

x1=I+- p - G p  
A - p  

For this case the matrix x1 is written as 

(23) 

where P is a Hermitian projector 

P 2 = P  P'=P 

The determinant of (23) at A = 0 is 

det XI (0)  = ( F / P  )' 

det P = 0. 

where s is the dimension of the image subspace of P. 
It is simple to prove that the renormalised gPh 

also solves equation (6) giving a physical solution gPhE SU(N). 
As an example we show here how one can calculate the single-soliton solutions. 

Let us suppose for simplicity that w = ia, which means that the soliton is positioned 
at x3 = 0. Then it is useful to write the final result in oblate spheroidal coordinates 
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defined as 

x 3  = am. r=a[(1+a2)(1-T 2 )] 1/2 

In these coordinates p takes the form 

p =tx(l-~)( i+a) .  

Using (23) and (26) the SU(N) one-soliton solution is 

a + i  'lN 2i 
gPh = (z) ( g 0 - z  Pgo). 

In order to specify the projector P one must choose a special go. 
Looking for SU(2) solutions one may take the following seed solution 

G O  
go = ( G = ri* expli(mx3 + s)] 

where K,  m and S are arbitrary real constants. The corresponding solution of the 
linear system (7) is 

where 

T = ( r2 -2Ax3-A2) i* f2exp{ i [m(xg+~h)+S] } .  

Therefore, the projector P appearing in (27) can be expressed as 

The discussion of the so-called reduction problem needs further study. For 
example, if we want to obtain solutions for the Heisenberg model, we must impose 
the condition: g+ = -g  as well. This would restrict the form of (14), namely, only an 
even number of poles could appear in it. 

We should like to thank Drs P Forgdcs and L Palla for discussions and for reading 
the manuscript. 
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